Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzyltriethylammonium aquatrichloridozincate

Lei Jin

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: jinlei8812@163.com

Received 5 November 2011; accepted 16 November 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.077; data-to-parameter ratio = 22.9.

In the crystal structure of the title molecular salt, $(C_{13}H_{22}N)$ -[ZnCl₃(H₂O)], the distorted tetrahedral anions are linked by O-H···Cl hydrogen bonds, generating [100] chains. Weak cation-to-anion C-H···Cl interactions generate a threedimensional network.

Related literature

For background literature concerning molecular salts, see: Tan et al. (2010); Jin et al. (2011).

Experimental

Crystal data $(C_{13}H_{22}N)[ZnCl_3(H_2O)]$ $M_r = 382.05$

Orthorhombic, $P2_12_12_1$ a = 8.3236 (17) Å b = 13.484 (3) Å c = 15.808 (3) Å V = 1774.2 (6) Å³ Z = 4

Data collection

Rigaku Mercury2 CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.629, T_{max} = 0.689$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.077$ S = 1.094054 reflections 177 parameters H-atom parameters constrained Mo $K\alpha$ radiation $\mu = 1.83 \text{ mm}^{-1}$ T = 291 K $0.28 \times 0.24 \times 0.22 \text{ mm}$

18427 measured reflections 4054 independent reflections 3522 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.045$

 $\begin{array}{l} \Delta \rho_{max} = 0.27 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.37 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1735 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.022 \mbox{ (13)} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ 3.121 (2) $O1 - H1D \cdots Cl2^{i}$ 0.98 2.17 163 $O1 - H1E \cdot \cdot \cdot Cl1^{ii}$ 0.93 2.24 3.155 (2) 168 $C1 - H1B \cdot \cdot \cdot Cl1^{iii}$ 0.96 2.82 3.599 (3) 139 $x - \frac{1}{2}, -y + \frac{3}{2}, -z;$ Symmetry codes: (i) (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z;$ (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author thanks the Ordered Matter Science Research Centre, Southeast University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6492).

References

Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
Jin, L., Liu, N., Li, Y.-J. & Wu, D.-H. (2011). Acta Cryst. E**67**, m1325.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.
Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E**66**, m690.

supplementary materials

Acta Cryst. (2011). E67, m1793 [doi:10.1107/S1600536811048823]

Benzyltriethylammonium aquatrichloridozincate

L. Jin

Experimental

In room temperature benzyltriethylammoniumchlorine (10 mmol, 2.28 g) were dissolved in 30 ml water, then a solution with $ZnCl_2(5 \text{ mmol}, 0.68 \text{ g})$ was dropped slowly into the previous solution with properly sirring. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after two weeks in air with some colorless solid blocks appeared after days with yield about 75%.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent ($\epsilon = C/(T-T_0)$), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement

H atoms were placed in calculated positions(C—H = 0.93Å for Csp^2 atoms and C—H = 0.96Å and 0.97 Å for Csp^3 atoms), assigned fixed U_{iso} values [$U_{iso} = 1.2Ueq(Csp^2/N)$ and $1.5Ueq(Csp^3)$] and allowed to ride.

Figures

Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.

Benzyltriethylammonium aquatrichloridozinc

Crystal data (C₁₃H₂₂N)[ZnCl₃(H₂O)] $M_r = 382.05$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.3236 (17) Å b = 13.484 (3) Å c = 15.808 (3) Å

F(000) = 792 $D_x = 1.430 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\theta = 3.0-27.5^{\circ}$ $\mu = 1.83 \text{ mm}^{-1}$ T = 291 KBlock, colorless V = 1774.2 (6) Å³ Z = 4

Data collection

Rigaku Mercury2 CCD diffractometer	4054 independent reflections
Radiation source: fine-focus sealed tube	3522 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.045$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
CCD_Profile_fitting scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -17 \rightarrow 17$
$T_{\min} = 0.629, \ T_{\max} = 0.689$	$l = -20 \rightarrow 20$
18427 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0349P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
4054 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
177 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1735 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.022 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.28 \times 0.24 \times 0.22 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.0907 (4)	0.6986 (3)	0.6677 (2)	0.0704 (9)
H1A	1.1371	0.6335	0.6665	0.106*

H1B	1.1646	0.7440	0.6937	0.106*
H1C	1.0684	0.7200	0.6110	0.106*
C2	0.9359 (4)	0.6962 (2)	0.71813 (18)	0.0526 (7)
H2A	0.9607	0.6758	0.7755	0.063*
H2B	0.8929	0.7630	0.7208	0.063*
C3	0.9403 (5)	0.4758 (2)	0.7474 (2)	0.0691 (10)
H3A	1.0262	0.5159	0.7691	0.104*
H3B	0.9807	0.4112	0.7333	0.104*
H3C	0.8578	0.4696	0.7896	0.104*
C4	0.8714 (3)	0.52380 (19)	0.66941 (17)	0.0485 (7)
H4A	0.7847	0.4827	0.6482	0.058*
H4B	0.9541	0.5262	0.6262	0.058*
C5	0.5348 (4)	0.5569 (2)	0.7260 (2)	0.0631 (8)
H5A	0.5022	0.5662	0.6683	0.095*
H5B	0.4453	0.5694	0.7628	0.095*
H5C	0.5714	0.4900	0.7338	0.095*
C6	0.6706 (3)	0.6286 (2)	0.74693 (16)	0.0482 (6)
H6A	0.6267	0.6951	0.7503	0.058*
H6B	0.7131	0.6119	0.8023	0.058*
C7	0.7509 (3)	0.66402 (18)	0.59743 (15)	0.0425 (6)
H7A	0.8416	0.6621	0.5589	0.051*
H7B	0.6717	0.6173	0.5765	0.051*
C8	0.6785 (3)	0.76674 (19)	0.59399 (15)	0.0412 (6)
C9	0.7711 (4)	0.8488 (2)	0.57179 (18)	0.0594 (8)
Н9	0.8812	0.8415	0.5639	0.071*
C10	0.7015 (5)	0.9410 (2)	0.5613 (2)	0.0720 (10)
H10	0.7649	0.9950	0.5462	0.086*
C11	0.5380 (5)	0.9536 (2)	0.57303 (18)	0.0646 (9)
H11	0.4911	1.0156	0.5657	0.078*
C12	0.4475 (4)	0.8747 (2)	0.59527 (18)	0.0566 (8)
H12	0.3378	0.8831	0.6040	0.068*
C13	0.5148 (4)	0.7814 (2)	0.60535 (16)	0.0481 (6)
H13	0.4496	0.7281	0.6199	0.058*
Cl1	0.82104 (9)	0.72961 (7)	0.14959 (5)	0.0678 (2)
Cl2	1.23689 (9)	0.63181 (6)	0.11597 (5)	0.0603 (2)
C13	0.89340 (10)	0.55114 (6)	-0.02493 (5)	0.0620 (2)
N1	0.8077 (2)	0.62856 (15)	0.68371 (12)	0.0372 (5)
01	1.0364 (2)	0.78841 (15)	-0.01861 (15)	0.0646 (6)
H1D	0.9476	0.8264	-0.0434	0.136 (18)*
H1E	1.1189	0.7929	-0.0579	0.120 (16)*
	1 000 40 (4)	0 ((007 (2)	0.05((92.(19)	0.04478 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0440 (17)	0.089 (2)	0.078 (2)	-0.0088 (17)	-0.0040 (16)	-0.007 (2)
C2	0.0519 (16)	0.0584 (17)	0.0473 (15)	-0.0004 (14)	-0.0111 (13)	-0.0131 (14)
C3	0.083 (2)	0.061 (2)	0.0629 (19)	0.0251 (17)	0.0060 (17)	0.0056 (16)

supplementary materials

C4	0.0562 (18)	0.0413 (15)	0.0479 (15)	0.0091 (13)	0.0042 (13)	-0.0071 (12)
C5	0.055 (2)	0.0617 (17)	0.0730 (19)	-0.0036 (15)	0.0157 (15)	0.0108 (16)
C6	0.0527 (16)	0.0529 (15)	0.0389 (14)	0.0097 (14)	0.0095 (12)	0.0028 (12)
C7	0.0488 (14)	0.0457 (13)	0.0331 (12)	-0.0015 (13)	-0.0011 (11)	-0.0044 (11)
C8	0.0447 (14)	0.0463 (14)	0.0326 (12)	-0.0064 (12)	-0.0026 (11)	0.0016 (11)
C9	0.0538 (18)	0.0612 (18)	0.0630 (19)	-0.0098 (15)	0.0029 (15)	0.0122 (15)
C10	0.082 (3)	0.0537 (18)	0.080 (2)	-0.0145 (18)	-0.002 (2)	0.0219 (18)
C11	0.091 (3)	0.0474 (16)	0.0556 (17)	0.0096 (17)	-0.0104 (17)	0.0049 (14)
C12	0.0546 (18)	0.0683 (19)	0.0469 (16)	0.0142 (15)	-0.0009 (13)	0.0061 (15)
C13	0.0450 (16)	0.0538 (15)	0.0456 (14)	-0.0046 (15)	-0.0037 (14)	0.0050 (11)
Cl1	0.0499 (4)	0.0890 (6)	0.0646 (5)	-0.0015 (4)	0.0090 (4)	-0.0227 (4)
Cl2	0.0412 (4)	0.0740 (5)	0.0658 (5)	-0.0034 (4)	-0.0119 (3)	0.0041 (4)
C13	0.0608 (5)	0.0689 (5)	0.0565 (4)	-0.0192 (4)	-0.0050 (4)	-0.0113 (4)
N1	0.0378 (11)	0.0402 (10)	0.0337 (10)	0.0039 (10)	0.0030 (9)	-0.0056 (9)
O1	0.0423 (12)	0.0623 (12)	0.0893 (15)	-0.0024 (10)	0.0078 (11)	0.0192 (12)
Zn1	0.03494 (16)	0.05128 (17)	0.04811 (17)	-0.00472 (16)	-0.00111 (15)	-0.00287 (12)

Geometric parameters (Å, °)

C1—C2	1.515 (4)	C7—C8	1.511 (4)
C1—H1A	0.9600	C7—N1	1.521 (3)
C1—H1B	0.9600	C7—H7A	0.9700
C1—H1C	0.9600	С7—Н7В	0.9700
C2—N1	1.506 (3)	C8—C13	1.389 (4)
C2—H2A	0.9700	C8—C9	1.394 (4)
С2—Н2В	0.9700	C9—C10	1.382 (4)
C3—C4	1.506 (4)	С9—Н9	0.9300
С3—НЗА	0.9600	C10—C11	1.384 (5)
С3—Н3В	0.9600	C10—H10	0.9300
С3—НЗС	0.9600	C11—C12	1.350 (5)
C4—N1	1.526 (3)	C11—H11	0.9300
C4—H4A	0.9700	C12—C13	1.386 (4)
C4—H4B	0.9700	C12—H12	0.9300
C5—C6	1.523 (4)	C13—H13	0.9300
С5—Н5А	0.9600	Cl1—Zn1	2.2478 (8)
С5—Н5В	0.9600	Cl2—Zn1	2.2373 (9)
С5—Н5С	0.9600	Cl3—Zn1	2.2330 (8)
C6—N1	1.517 (3)	O1—Zn1	2.024 (2)
С6—Н6А	0.9700	O1—H1D	0.9808
С6—Н6В	0.9700	O1—H1E	0.9280
C2—C1—H1A	109.5	N1—C7—H7A	108.2
C2—C1—H1B	109.5	С8—С7—Н7В	108.2
H1A—C1—H1B	109.5	N1—C7—H7B	108.2
C2-C1-H1C	109.5	H7A—C7—H7B	107.3
H1A—C1—H1C	109.5	C13—C8—C9	117.5 (3)
H1B—C1—H1C	109.5	C13—C8—C7	121.1 (2)
N1-C2-C1	115.2 (2)	C9—C8—C7	121.1 (2)
N1—C2—H2A	108.5	C10—C9—C8	120.9 (3)
C1—C2—H2A	108.5	С10—С9—Н9	119.6

N1—C2—H2B	108.5	С8—С9—Н9	119.6
C1—C2—H2B	108.5	C9—C10—C11	120.4 (3)
H2A—C2—H2B	107.5	С9—С10—Н10	119.8
С4—С3—НЗА	109.5	C11—C10—H10	119.8
С4—С3—Н3В	109.5	C12—C11—C10	119.2 (3)
НЗА—СЗ—НЗВ	109.5	C12—C11—H11	120.4
С4—С3—Н3С	109.5	C10-C11-H11	120.4
НЗА—СЗ—НЗС	109.5	C11—C12—C13	121.3 (3)
НЗВ—СЗ—НЗС	109.5	C11—C12—H12	119.4
C3—C4—N1	114.1 (2)	C13—C12—H12	119.4
C3—C4—H4A	108.7	C12—C13—C8	120.7 (3)
N1—C4—H4A	108.7	C12—C13—H13	119.6
C3—C4—H4B	108.7	C8—C13—H13	119.6
N1—C4—H4B	108.7	C2—N1—C6	107.17 (19)
H4A—C4—H4B	107.6	C2—N1—C7	110.7 (2)
С6—С5—Н5А	109.5	C6—N1—C7	110.93 (19)
С6—С5—Н5В	109.5	C2—N1—C4	111.6 (2)
H5A—C5—H5B	109.5	C6—N1—C4	111.1 (2)
С6—С5—Н5С	109.5	C7—N1—C4	105.44 (18)
H5A—C5—H5C	109.5	Zn1—O1—H1D	122.6
H5B—C5—H5C	109.5	Zn1—O1—H1E	123.8
N1—C6—C5	114.5 (2)	H1D—O1—H1E	104.8
N1—C6—H6A	108.6	O1—Zn1—Cl3	106.59 (7)
С5—С6—Н6А	108.6	O1—Zn1—Cl2	107.13 (6)
N1—C6—H6B	108.6	Cl3—Zn1—Cl2	115.66 (4)
С5—С6—Н6В	108.6	O1—Zn1—Cl1	101.18 (7)
Н6А—С6—Н6В	107.6	Cl3—Zn1—Cl1	111.79 (3)
C8—C7—N1	116.38 (19)	Cl2—Zn1—Cl1	113.09 (3)
С8—С7—Н7А	108.2		
N1—C7—C8—C13	-90.3 (3)	C1—C2—N1—C7	-64.5 (3)
N1—C7—C8—C9	95.6 (3)	C1—C2—N1—C4	52.7 (3)
C13—C8—C9—C10	-0.3 (4)	C5—C6—N1—C2	-175.1 (2)
C7—C8—C9—C10	174.1 (3)	C5—C6—N1—C7	63.9 (3)
C8—C9—C10—C11	0.3 (5)	C5—C6—N1—C4	-53.0 (3)
C9—C10—C11—C12	0.3 (5)	C8—C7—N1—C2	-60.2 (3)
C10-C11-C12-C13	-0.9 (5)	C8—C7—N1—C6	58.7 (3)
C11—C12—C13—C8	0.9 (4)	C8—C7—N1—C4	179.0 (2)
C9—C8—C13—C12	-0.3 (4)	C3—C4—N1—C2	57.5 (3)
C7—C8—C13—C12	-174.7 (2)	C3—C4—N1—C6	-62.0 (3)
C1—C2—N1—C6	174.4 (2)	C3—C4—N1—C7	177.8 (3)
······································			
Hydrogen-bond geometry (A, \circ)			

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O1—H1D····Cl2 ⁱ	0.98	2.17	3.121 (2)	163
O1—H1E…Cl1 ⁱⁱ	0.93	2.24	3.155 (2)	168
C1—H1B…Cl1 ⁱⁱⁱ	0.96	2.82	3.599 (3)	139

Symmetry codes: (i) x-1/2, -y+3/2, -z; (ii) x+1/2, -y+3/2, -z; (iii) x+1/2, -y+3/2, -z+1.

